
The second and third moments measured in the first part of this
work are analyzed, combined with the moment equations deduced
from the general rate model. A new understanding of the external
mass transfer coefficient is obtained (i.e., the external mass
transfer coefficient is linearly velocity dependent and then
contributes to the intercept of the regression line of µ2µ2

0 ~ µ0).
And the mass transfer parameters involved in the general rate
model are also determined and discussed.

Introduction

It is well known that the resolution power of a chromato-
graphic systemmainly depends on the efficiency of the column
adopted, characterized by its height equivalent to a theoretical
plate. Therefore, much effort is devoted to improving column
efficiency. This quest is the driving force in the continuous
development of chromatographic technology.
Improving column performance requires a more funda-

mental understanding of the height equivalent to a theoretical
plate of a column, the identification of the origin of the dif-
ferent contributions to this characteristic, and their proper
modeling. The general rate (GR) model of chromatography
provides the most powerful approach to such an investigation.
This route has been taken by many authors (1–12). In this
model, the different sources of band broadening are identified,
modeled, and introduced in the mass balance equation of the
compound considered. This partial differential equation cannot
be solved for the elution band profile, but the moments of this
band can be calculated as functions of the different parameters
of the problem. The general solution of the problem is illus-

trated by the work of Miyabe et al. (2–6), who obtained some
significant results on the contribution of surface diffusion.
These authors compared the experimental values measured
for the first and second moment to their theoretical expres-
sions. However, the different authors following this approach
had to use the Wilke-Chang (13) and the Wilson-Geankoplis
correlations (14) to estimate the molecular diffusivity and the
external mass transfer coefficient in order to estimate the
other contributions of the mass transfer resistances to the
HETP. The main imperfection of this method is that the two
correlations listed earlier originated from the field of chemical
engineering and were derived under sets of experimental con-
ditions that were very different from those used in chro-
matography. This might introduce significant errors in the
values estimated for the model parameters.
This situation reminds us of the application of higher

moments, which was active in the 1970s but failed to come
true because of the large measurement errors of higher
moments for gas chromatographic peaks. In the first part of
this work (15), it has been shown that the third moment with
sufficient accuracy can be measured under proper experimental
conditions for reversed-phase liquid chromatography with
modern instruments and computer data acquisition and pro-
cessing. The measurement result of the third central moment
shows a clear regularity of the flow velocity dependence. This
drives us to make further analysis about it and to obtain more
fundamental information about the mass transfer kinetics in
column, which cannot be acquired only from the results of the
first two moments.
In the second part of the work, the measurement results of

the statistical moments are analyzed, combined with the
moment equations deduced from the GR model. A new
understanding of the external mass transfer coefficient is
obtained, and then the values of the mass transfer parameters
involved in the GRmodel are estimated under the experimental
conditions in this work.
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Theory

Definition of statistical moments
The nth central moment (µn) of a chromatographic peak was

defined as Eq. 1 in the first part of this work (15).

GR model
The GR model is a more complicated model because it

involves the effect of nearly all possible factors that contribute
to the mass transfer processes in column. Sometimes, the
effect of a certain factor is weak; then it can be neglected, and
this leads to the different forms of the model equations. In this
work, the kinetic process of adsorption/desorption is consid-
ered to be fast enough, and its contribution to the overall
process of mass transfer can be neglected. This is a reasonable
assumption and has been widely used by many chromatogra-
phers. The mass balance equations and the corresponding
conditions are listed as follows:

The mass balance equation for the solute in the bulk mobile
phase is

where C, Cp are the concentration of solute in the bulk and
stagnant mobile phase, respectively, z is the axial coordinate
along the column, r is the radial coordinate along the radius of
pore in packing particles, u0 is the superficial velocity of mobile

phase (u0 =
F , F is the volumetric flow rate of mobile____

πR2

phase and R the radius of column), εe is the external porosity,
DL is the axial dispersion coefficient, Rp is the average radius of
the packing particles, and kext is the external mass transfer
coefficient.
The initial condition of the mass balance equation is as

follows:

C(0,z) = 0 (0 < z < L) Eq. 2

where L is the length of the column.
The boundary conditions can be calculated using the

following:

C(t,0) = { CF 0 ≤ t ≤ tp Eq. 3

0 t > tp

where CF is the feeding concentration of the sample of solute,
and tp is the width of the injection pulse.
The mass balance equation for the solute in the stagnant and

stationary phase is

where q is the concentration of solute in stationary phase, εp is
the internal porosity, Dp is the pore diffusivity, and Ds is the
surface diffusivity.
The corresponding initial conditions of the equation are

q (0, z,r ) = 0 Eq. 6

Cp(0, z,r ) = 0 Eq. 7

The natural boundary condition for the second mass balance

equation at the center of pore is , and the joint con-

dition for the two mass balance equations listed earlier at
r = Rp is listed below:

(εpDp

Because the mass transfer resistance of adsorption/desorp-
tion is neglected, the concentrations of solute in stagnant and
that in stationary phase are in the state of equilibrium, and only
linear adsorption isotherm is considered here (q = GCp , where
G is the linear adsorption constant of the adsorption isotherm);

therefore, the expression of can be
simplified as follows:

where Def f is the effective diffusivity of solute:

Def f = εpDp+ (1 – εp)DsG

The analytical solution of the GR model cannot be obtained,
but the moment equations of GR model can be deduced
according to the correlations below, where C

––
(p) is the solution

of GR model in Laplace domain, and p is the Laplace transform
variable.
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The moment equations
As mentioned previously, the equilibrium adsorption is con-

sidered in this work, and so the model here is different from
that used by Kucera (16). In his work, the nonequilibrium

adsorption process was considered (instead of

q = GCp here), where a and b are constants. And the results of
moments cannot be applicable to the problem here through
simple transformation. In addition, the important expression
of the third moment is not involved in the moments equations
presented by Kubin (17). All these are reasons for our calcu-
lating the moment equations. The process of calculation has no
additional novelty, so it is not introduced in detail here, and it
has been accomplished along the way by Kubin and Kucera.
That is, firstly the solution of GRmodel in Laplace domain C

––
(p)

was deduced, and then the derivatives according to Eq. 11–13
were calculated. The works of Suzuki et al. (18) and Miyabe et
al. (19) were also referred for the treatment of some particular
problems. The considerable difficulty in the process of calcu-
lation is that calculations for some derivatives are complicated
and time consuming, and this was the reason which Kubin (17)
expressed for the third moment equation of being the most
complicated model absent in his paper. Such calculations were
done and checked by the tool MATLAB 7.1 in this work. The
obtained moment equations are listed as follows:

M1 =

µ2 =

z

µ3 = z

z

z

where J = εp + (1 – εp)G.

Experimental

Measurement of statistical moments
All the information about the experiments were described in

detail in the first part of this work (15).

Determination of porosities of columns
Chemical
Uracil (99%, Alfa Aesar China, Tianjin, China) was used to

measure the total porosities (εt ) of columns. Nine polystyrene
standards (narrow molecular weight distribution) of different
molecular weight (Alfa Aesar China) were used to determine the
external porosities (εe) of columns with HPLC-grade tetrahy-
drofuran (Chinese National Medicines Corporation, Shanghai,
China) as solvent and washing mobile phase of them. And their
molecular weight are 1300, 2500, 4000, 13,000, 25,000, 65,000,
152,000, 400,000, and 900,000, respectively.

Procedure
The external porosities (εe) of two columns were measured

in the method reported by Guan et al. (20). The measured
external porosities (εe) for column 1 and column 2 are 0.39 and
0.295, respectively. And then according to equation εt = εe +
(1 – εe)εp , the internal porosities (εp ) for two columns can be
calculated as 0.44 and 0.47 for column 1 and column 2,
respectively.

Results and Discussions

All the moments results discussed below are the net
moments, which means the extra-column effect has been
removed.

Result of the second central moment
The experimental results of µ2u02 ~ u0 under different

conditions are considered in this work (Figure 1). Obviously,
the linear correlation between µ2u02 and u0 exists for all the
results in Figure 1, which is indicated by the regression lines
in Figure 1A–1E. The linear regression parameters are shown
in Table I.
According to the theoretical result of the second central

moment based on the GR model (Eq. 15), the theoretical
correlation of µ2u02 ~ u0 can be written as below:

µ2u02 =

Lu0(1 – εe)

L

where Vp is the volume of the sample injected into the column
and in this work is always 20 µL. And the axial dispersion
coefficient DL in equation (15) has been replaced here accord-
ing to the following correlation (1,21):

DL = γ1Dm + γ2dpu 0 Eq. 18

where Dm is the molecular diffusivity of solute in mobile phase,
and γ1, γ2 the geometric constants are normally reported as 0.7
and 0.5, respectively.
In comparing Eq. 17 with the experimental results in Figure

1, it can be concluded that the band broadening due to the
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molecular diffusion of solute in mobile phase can be neglected.
The axial dispersion is mainly attributed to the eddy diffusion
and then DL = γ2dpu0. This is easy to understand because of
the small molecular diffusivity of solute in liquid mobile
phase. And then, the values of γ2 under different experimental
conditions are obtained and presented in Figure 1A–1E,
respectively. Apparently, all of them are much larger than 0.5

and lead to the axial dispersion coefficients larger than that
estimated from Eq. 18, where γ2 is equal to 0.5. In fact, this is
not the first time that large axial dispersion coefficient is
observed. Ruthven also pointed out (21) that in most of earlier
studies, the extent of axial dispersion coefficient in the low
Reynolds number region was underestimated. The problem
will be further discussed later.

Figure 1. Plots of µ2u0
2 ~ u0 obtained under conditions (A)–(E), respectively. A detailed description of the conditions is shown in Table I in the first part of this work.
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Discussion about the result of third central moment
The experimental results of the third central moment in

the first part of this work show that the linear correlation
exists between µ3u04 and u0 . And now the result is discussed
with the consideration of the moment equations of GR model
earlier.
Based on Eq. 15–16, the following equation of µ3u04 can be

deduced:

µ3u04 = 6εeDL[εe + (1 – εe )J ] • [µ2u02 –

L (1 – εe)u03

The experimental linear correlations of u3u04 ~ u0 indicate
that the effect of the second right-hand side (RHS) term of the
equation should be neglected, and the first RHS term of the
equation should be approximately a linear function of u0.
Actually, the first RHS term of the equation is a quadratic
function of u0, according to the earlier analysis, but the datum
in Table I [except for the result obtained under condition (A)]
show that the linear part of this term is dominant. And this is
the reason for the approximately linear experimental cor-
relation between u3u04 and u0.
Although the quadratic part of the first RHS term of Eq. 19

is not dominant, it is significant because it is related to
intraparticle mass transfer processes. To get more information
about intra-particle mass transfer parameters, Eq. 16 is
transformed to the style written below, in which the effect of
the eddy diffusion is deducted to make the effect of intraparticle
mass transfer resistances stand out:

µ3u0
2 – L

(1 – εe)

The corresponding experimental correlations of:

µ3u20 – L ~ u0

can be obtained based on the measured results of the third
central moment for conditions (C)–(E). They are shown in
Figure 2A–2C, respectively, and the values of γ2 used here are
from Figure 1. The corresponding results obtained under con-
dition (A) and (B) are not shown here because of scattered
data points caused by the poor measurement accuracy of the
third central moments. The data points in Figure 2A appear
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Table I. Linear Regression Parameters in Figure 1

A* B*
A* –

(cm2) (cm · min) (cm2)

Condition (A) 0.0398 0.0312 0.0386
Condition (B) 0.220 0.0361 0.219
Condition (C) 0.0690 0.0064 0.0678
Condition (D) 0.347 0.0399 0.346
Condition (E) 0.0695 0.0181 0.0694

* The values of A and B for each condition in Table I are equal to the intercept and
slop, respectively, of the regression line in Figure 1.

( )1__
12

2Vp____
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Figure 2. Plots of µ3u0
2 – L ~ u0 obtained under

conditions (A)–(E), respectively. A detailed description of the conditions is
shown in Table I in the first part of this work.
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scattered, and the regularity of the change

of µ3u02 – L with u0 is not clear. But in

Figure 2B, the drop tendency of the data points with increase
of flow velocity can be found. And in Figure 2C, a clearer
descending regularity is shown.
It can be concluded from the result of Figure 2 that the

effect of the second RHS term of Eq. 20 is negligible, which is
the same with the analysis result of Eq. 19. Further-

more, the decrease of u3u02 – L with u0

shown in Figure 2 indicates the velocity dependence of the
parameters in the first RHS term of Eq. 20. Among all the
parameters involved in the term, the external mass transfer
coefficient should be the most possible one, which is velocity-
dependent and should increase with the flow velocity.
Now, based on the understanding of the velocity dependence

of kext, the correlation of µ2u02 ~ u0 should be reconsidered.
For the range of flow velocity in this work, Figure 1 shows that
the experimental result of the second central moment always
indicates the linear correlation between µ2u02 and u0 under
various experimental conditions. And as for Eq. 17, the
most possible result ensuring that the linear correlation of
µ2u02 ~ u0 as well as the velocity-dependence of kext be valid
simultaneously should be that kext is proportional to u0. And
then with the effect of the molecular diffusion being neglected,
Eq. 17 is rewritten as follows:

µ2u02 =

L(1 – εe)

where α is the proportional coefficient (i.e., kest = α • u0).
Obviously, the effect of the external mass transfer resistance
is to contribute to the intercept of the regression line of
u2u02 ~ u0, which is the same with the contribution of the eddy
diffusion. This is why the larger values of γ2 are obtained when
the intercept of the regression line of µ2u02 ~ u0 is attributed
only from the eddy diffusion.

Discussion about the velocity dependence of kext
In fact, it is not a fresh conclusion that the external mass

transfer coefficient kext is velocity-dependent. Numerous exper-
imental investigations and a wide range of empirical mass
transfer correlations for packed beds are available in the liter-
ature (14,22–30). Based on most of those correlations, the
expressions of kext related to the flow velocity can be deduced.
And the frequently used empirical mass transfer correlation by
chromatography researchers is the Wilson-Geankolis correla-
tion obtained at very low Reynolds numbers, which leads to an

expression of kext proportional to u0
1/3(kest =

(31). Those expressions from various authors are different,
especially of the exponent of the flow velocity, but they all
indicate the positive correlations between kext and u0.

On the other hand, the positive correlations between kext and
u0 can be explained by the physical origin of the external mass
transfer resistance. When the mobile phase is flowing through
the packing particles of column, the local flowing velocity is
not uniform across the cross-section of the passage of the
liquid because of the liquid viscosity. The local velocity is the
highest in the center of the passage and is the lowest near the
surface of the packing particles. Thus a boundary layer forms
against the surface, which is normally named the stagnant
film. The thickness of the boundary layer cannot be determined
according to the theory of boundary layer because of the very
low Reynolds range used in chromatography; but it is easy to
understand that such thickness decreases with the increase of
the flowing velocity of the mobile phase. And the external mass
transfer coefficient reflects the difficult level for the solute
molecular of traveling across the stagnant film through

diffusion, as described by the equation kext ≈ , where δ is

the thickness of the stagnant film. Therefore, with the increase
of the flowing velocity, δ decreases and then kext increases.
This is the explanation for the positive correlations between kext
and u0.

Determination of the parameters involved in GR model
Based on the analysis, the parameters in GR model are

determined as follows.

Determination of the value of γ2
The correlation of the axial dispersion coefficient (Eq. 18)

was obtained from the experimental result of the column
packed with nonporous glass balls, in which the geometric
constant γ2 is equal to 0.5. And the eddy diffusion is generally
considered to originate from the non-uniform flow pattern
around the packing particles in the column. It exists in the
interstitial space among the packing particles. Therefore, the
correlation obtained from the experimental result of the
column of nonporous packing particles (Eq. 18) should be
valid for the column packed with porous particles. And then,
the value of γ2 is still considered as 0.5 in this work.

In Figure 2, the plots of: µ3u02 – L

versus u0 were calculated according to the measurement
result of the third central moments using the values of γ2
from Figure 1A–1E. Those γ2 values are much larger than 0.5.
It is easy to understand that the descending tendency of:

µ3u02 – L with the increase of u0 does

not change with the value alteration of γ2. When the smaller γ2
is used, the descending tendency of:

µ3u02 – L versus u0 is more remarkable.

Determination of the values of kext and Deff
And now, the values of kext and Deff can be easily determined

according to the linear regression of the experimental result of
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the second central moment and Eq. 21. Because of the velocity
dependence of kext, only the proportional coefficient α of it is
given. The result is shown in Table II.
Table II shows that the vales of the effective diffusivity Deff of

the phenylethane under conditions (B), (D), and (E) are similar,
no matter the different mobile phases and columns that were
used. And these values are larger than those of uracil under
conditions (A) and (C). It is a reasonable result for two reasons.
Firstly, it is because of their different chemical properties.
Compared with uracil, the phenylethane is easier to dissolve in
the mobile phases used in this work, and the molecular
diffusivity of the phenylethane should be larger than that of
uracil in these mobile phases. Secondly, as indicated by Eq. 10,
the effective diffusivity consists of the pore diffusivity and the
surface diffusivity. As for uracil, its intraparticle effective
diffusivity is just the pore diffusivity for its non-adsorption
property under the experimental conditions here. For
phenylethane, besides the pore diffusivity the effective
diffusivity also involves the effect of the surface diffusion,
which has been reported (2–6) as an important contribution to
the band broadening.
According to the value of 3α in Table II, it can be concluded

that the external mass transfer coefficient of phenylethane is
larger than that of uracil at the same flow velocity, which
indicates the larger external mass transfer resistance of uracil.
The result is consistent with the analysis of the smallermolecular
diffusivity of uracil in the mobile phase used in this work.
The rationality of the values of Deff and kext shown earlier is

also a support for the conclusion of the linear velocity
dependence of kext, which was developed earlier in this study.
It indicates that those results obtained under the experimental
conditions in this work are self-consistent. And what is more
important is that the results show us a convenient method to
determine the parameters involved in the GR model through
the experimental result of the second central moment, which
can be accurately measured; it is also a way to get more
information about the mass transfer processes in the column.
But the experimental condition taken in this work is still
narrow, thus more experiments for different samples and
mobile phases at wider ranges of flow velocity are needed for
further discussion about the problem.

Conclusions

The experimental results of the second and third central
moments are analyzed, combined with the moment equations

deduced from the GRmodel. And it is concluded that under the
experimental conditions in this work, the external mass
transfer coefficient is dependent linearly on the flow velocity.
Based on the conclusion, the reasonable values of the effective
diffusivity and the external mass transfer coefficient are
obtained.
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